Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Meng-Xin Ding,* Bing Ma, Ran Zhu, Hai-Tao Shan, Ji Shao and Xin Sheng

Chemistry Department, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: m-x-ding@sohu.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.014 \AA$
R factor $=0.058$
$w R$ factor $=0.235$
Data-to-parameter ratio $=16.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

2,2,5,5-Tetramethyl-1,6-diphenyl-7,8diselenabicyclo[4.1.1]octane 7,8-dioxide

In the title compound, $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Se}_{2}$, there are two selenoxide groups, and the two $\mathrm{Se}-\mathrm{O}$ bonds point in opposite directions. The $\mathrm{Se}_{2} \mathrm{C}_{2}$ ring is not planar, having a dihedral angle between the two triangular $\mathrm{C}_{2} \mathrm{Se}$ planes of $152.9(3)^{\circ}$.

Comment

In our recent investigations of the oxidation of 1,3-diselenetane, we studied the reaction of $2,2,5,5$-tetramethyl-1,6-di-phenyl-7,8-diselenabicyclo[4.1.1] octane (Ishii et al., 1992) with m-chloroperbenzoic acid. The title compound, (I), is one of the products in this reaction and an X-ray crystallographic analysis was undertaken to study its stereochemistry.

(I)

The molecular structure of (I) is shown in Fig. 1, and confirms the presence of two selenoxide groups. The bond lengths of the four $\mathrm{Se}-\mathrm{C}$ bonds vary between 2.007 (8) and 2.051 (8) \AA (Table 1). This is a little longer than the normal $\mathrm{Se}-\mathrm{C}$ bond length (1.98-2.00 \AA). The two $\mathrm{Se}-\mathrm{O}$ bonds point in opposite directions (Table 1) and their bond lengths are 1.652 (7) and 1.651 (6) \AA. This is compatible with the normal $\mathrm{Se}-\mathrm{O}$ length. The other bond lengths in (I) are also within normal ranges (Allen et al., 1987).

In the $\mathrm{Se}_{2} \mathrm{C}_{2}$ ring, the dihedral angle between the $\mathrm{C} 1-$ $\mathrm{Se} 1-\mathrm{C} 6$ and $\mathrm{C} 1-\mathrm{Se} 2-\mathrm{C} 6$ planes is $152.9(3)^{\circ}$. This is in

Figure 1
The structure of compound (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. Dashed lines denote intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Received 22 June 2004
Accepted 27 July 2004
Online 7 August 2004
contrast to the approximately square-planar arrangement found for the $\mathrm{Se}_{2} \mathrm{C}_{2}$ ring in 1,3-diselenetanes (Eeker et al., 1990; Adrien et al., 1989).

The distance between the two Se atoms is 2.87 (2) \AA, which is too long to be considered as a bond. In fact, it is possible to find several $\mathrm{Se}-\mathrm{Se}$ bonds whose bond lengths are close to 2.87 (2) \AA, but these bonds only exist in inorganic compounds (Shantha Nandana et al., 1990; Dana \& Andrews, 1996).

Experimental

A solution of 2,2,5,5-tetramethyl-1,6-diphenyl-7,8-diselenabicyclo[4.1.1]octane ($179.9 \mathrm{mg}, 0.40 \mathrm{mmol}$) in dichloromethane was added to a solution of m-chloroperbenzoic acid ($96 \mathrm{mg}, 0.56 \mathrm{mmol}$) in dichloromethane. The mixture was stirred for 15 min at room temperature. After the solvent had been removed under vacuum, the residue was separated on a chromatographic column, using an acetone-hexane ($1: 2 \mathrm{v} / \mathrm{v}$) mixture as eluant. Single crystals suitable for X-ray crystallographic analysis were prepared by slow evaporation of a solution in dichloromethane-hexane ($1: 5 \mathrm{v} / \mathrm{v}$).

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Se}_{2}$
$M_{r}=480.35$
Monoclinic, $P 2_{1} / n$
$a=9.1930$ (18) £
$b=17.752$ (4) \AA
$c=12.779$ (3) \AA
$\beta=103.43$ (3) ${ }^{\circ}$
$V=2028.4(7) \AA^{3}$
$Z=4$

Data collection

Enraf-Nonius CAD-4	$R_{\text {int }}=0.065$
\quad diffractometer	$\theta_{\max }=26.0^{\circ}$
$\omega / 2 \theta$ scans	$h=0 \rightarrow 10$
Absorption correction: ψ scan	$k=0 \rightarrow 21$
(North et al., 1968)	$l=-15 \rightarrow 15$
$T_{\min }=0.279, T_{\max }=0.334$	3 standard reflections
4203 measured reflections	every 200 reflections
3951 independent reflections	intensity decay: none

2764 reflections with $I>2 \sigma(I)$

Refinement

```
Refinement on \(F^{2}\)
\(R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058\)
\(w R\left(F^{2}\right)=0.235\)
\(S=1.14\)
3951 reflections
235 parameters
H atoms treated by a mixture of
    independent and constrained
```

 refinement
 $$
\begin{aligned}
& D_{x}=1.573 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation }
\end{aligned}
$$

Cell parameters from 25 reflections
$\theta=10-13^{\circ}$
$\mu=3.66 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.4 \times 0.3 \times 0.3 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.065 \\
& \theta_{\max }=26.0^{\circ} \\
& h=0 \rightarrow 10 \\
& k=0 \rightarrow 21 \\
& l=-15 \rightarrow 15 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 200 \text { reflections } \\
& \text { intensity decay: none }
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}^{2}\right)+(0.14 P)^{2} \\
&+4 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.007 \\
& \Delta \rho_{\max }=1.05 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.07 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,^{\circ}\right)$.

$\mathrm{Se} 1-\mathrm{C} 6$	$2.051(8)$	$\mathrm{Se} 2-\mathrm{C} 6$	$2.007(8)$
$\mathrm{Se} 2-\mathrm{O} 2$	$1.651(6)$	$\mathrm{Se} 2-\mathrm{C} 1$	$2.023(8)$
$\mathrm{O} 1-\mathrm{Se} 1-\mathrm{C} 1$	$106.1(4)$	$\mathrm{O} 2-\mathrm{Se} 2-\mathrm{C} 6$	$112.3(3)$
$\mathrm{O} 1-\mathrm{Se} 1-\mathrm{C} 6$	$103.2(4)$	$\mathrm{O} 2-\mathrm{Se} 2-\mathrm{C} 1$	$113.7(3)$

Figure 2
A packing diagram of compound (I).

The H atoms were included in calculated positions and treated as riding atoms $\left[\mathrm{C}-\mathrm{H}\right.$ distances are $0.93 \AA$ for CH and $0.97 \AA$ for CH_{2} groups, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, and $\mathrm{C}-\mathrm{H}=0.96 \AA$ for methyl groups, with $\left.U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})\right]$.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors thank Mr Hua-Qin Wang (Modern Analysis Center, Nanjing University) for data collection.

References

Adrien, R. J., Gable, R. W. \& Hoskins, B. F. J. (1989). J. Organomet. Chem. 359, 33-39.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Dana, B. G. \& Andrews, L. (1996). J. Phys. Chem. 100, 16487-16494.
Eeker, G., Hock, R., Kruger, C., Werner, S., Klarner, F.-G. \& ArtschwagerPerl, U. (1990). Angew. Chem. Int. Ed. Engl. 29, 1067-1068.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Ishii, A., Ding, M.-X., Nakayama, J. \& Hoshino, M. (1992). Chem. Lett. pp. 2289-2292.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Shantha Nandana, W. A., Passmore, J. \& Wong, C.-M. (1990). Inorg. Chem. 29, 3529-3538.
Sheldrick, G. M. (1990). SHELXS97. Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997a). SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

